نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مدیریت اطلاعات، مرکز منطقه‏‌ای اطلاع‏‌رسانی علوم و فناوری، شیراز، ایران

2 دکتری تخصصی علم اطلاعات و دانش شناسی دانشگاه خوارزمی، نهاد کتابخانه های عمومی کشور، تهران، ایران

چکیده

Purpose: This study discovers the global knowledge structure of landslide research over the past twenty years in Researchers' research outputs.
Methodology: This study uses co-word analysis to determine and visualize the global structure of landslide knowledge, track the most widely used subjects, and choose the conceptual dynamics in research on landslides.  This scientometric method was used to study data from the Web of Science Core Collection (WOSCC) regarding 9185 landslide research publications produced from 2000 to 2020.
Findings: The keyword “geographic information systems (GIS)” had the highest frequency, and the phrase “landslide susceptibility” was the most often used co-word pair. Co-word analysis produced 15 thematic clusters. Cluster 8 has the highest density among the clusters, and the highest centrality was seen in Cluster 1. Most of the thematic clusters are located in the third quadrant of the strategic diagram, indicating either emerging or declining clusters. The maturity and cohesion of each cluster show their trends.
 Conclusion: Co-word analysis, as a suitable and powerful tool, can visualize the scientific and intellectual structure of landslides and track the most used topics, and determine the conceptual dynamics and areas of Landslide research, and its results will be of great help to research and practical planners and policymakers. The results of the study significantly help researchers and applied planners and policymakers in adopting appropriate measures to reach more effective solutions in the shortest possible time. Also, develop research evaluation policies, and university managers aimed to create research evaluation policies.
Value:The research has also explored the complex relationships governing international studies, illuminates angles, highlights research gaps, and leads scholars and analyses. These results will pave the paths forward for planners and policymakers in organizations and centers actively addressing landslide management’s strategic plans. Subsequent studies could focus on the examination of the networks of collaboration between centers and researchers, and their impacts on decision-making.
 

کلیدواژه‌ها

عنوان مقاله [English]

Landslides: visualization of the global conceptual trend

نویسندگان [English]

  • Farshid Danesh 1
  • Somayeh Ghavidel 2

1 Assistant Professor, Information Management Research Department, Regional Information Center for Science and Technology (RICeST), Shiraz, Iran

2 Ph.D. of knowledge and Information Science from Kharazmi university; Iran Public Library Foundation, Tehran, Iran

چکیده [English]

 Purpose: This study discovers the global knowledge structure of landslide research over the past twenty years in Researchers' research outputs.
Methodology: This study uses co-word analysis to determine and visualize the global structure of landslide knowledge, track the most widely used subjects, and choose the conceptual dynamics in research on landslides.  This scientometric method was used to study data from the Web of Science Core Collection (WOSCC) regarding 9185 landslide research publications produced from 2000 to 2020.
Findings: The keyword “geographic information systems (GIS)” had the highest frequency, and the phrase “landslide susceptibility” was the most often used co-word pair. Co-word analysis produced 15 thematic clusters. Cluster 8 has the highest density among the clusters, and the highest centrality was seen in Cluster 1. Most of the thematic clusters are located in the third quadrant of the strategic diagram, indicating either emerging or declining clusters. The maturity and cohesion of each cluster show their trends.
 Conclusion: Co-word analysis, as a suitable and powerful tool, can visualize the scientific and intellectual structure of landslides and track the most used topics, and determine the conceptual dynamics and areas of Landslide research, and its results will be of great help to research and practical planners and policymakers. The results of the study significantly help researchers and applied planners and policymakers in adopting appropriate measures to reach more effective solutions in the shortest possible time. Also, develop research evaluation policies, and university managers aimed to create research evaluation policies.
Value:The research has also explored the complex relationships governing international studies, illuminates angles, highlights research gaps, and leads scholars and analyses. These results will pave the paths forward for planners and policymakers in organizations and centers actively addressing landslide management’s strategic plans. Subsequent studies could focus on the examination of the networks of collaboration between centers and researchers, and their impacts on decision-making.

کلیدواژه‌ها [English]

  • Landslide
  • Scientometrics
  • Co-word analysis
  • Cluster analysis
  • Strategic diagram
Abuzied, S., Ibrahim, S., Kaiser, M., Saleema, T. (2016). Geospatial susceptibility mapping of earthquake-induced landslides in Nuweiba area, Gulf of Aqaba, Egypt. Journal of Mountain Science (J. Mt. Sci), 13, 1286–1303. doi: 10.1007/s11629-015-3441-x.
Ahmadi, H., Osareh, F. (2017). Co-word Analysis Concept, Definition, and Application. National Studies on Librarianship and Information Organization, 28(1), 125-145. [In Persian] http://nastinfo.nlai.ir/article_1132.html
Analytics, [database on the Internet]. (2020). Web of Science platform: Web of Science: Summary of Coverage. [Accessed on 18 March 2020]. Available from: https: //clarivate.libguides.com/webofscienceplatform/coverage.
Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., Tien Bui, D. (2020). Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. Remote Sensing, 12(3), 475. doi.org/10.3390/rs12030475
Bailey, G.N., Reynolds, S.C., King, G.C. (2011). Landscapes of human evolution: models and methods of tectonic geomorphology and the reconstruction of hominin landscapes. Journal of human evolution., 60(3), 257-80. doi: 10.1016/j.jhevol.2010.01.004
Bahrami, Y., Hassani, H., Maghsoudi, A. (2020). Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran. GeoJournal, 86(6), 1797- 1816. doi.org/10.1007/s10708-020-10162-y
Bigdeloo, E., Makkizadeh, F. (2019). Intellectual structure of knowledge in Andrology field (2008 to 2017): A Co-word analysis. International Journal of Reproductive BioMedicine (Iranian Journal of Reproductive Medicine), 17(5), 349- 360. doi.org/10.18502/ijrm.v17i5.4602  URL: http://ijrm.ir/article-1-1518-en.html
Birkle, C., Pendlebury, D.A., Schnell, J., Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363–376. doi.org/10.1162/qss_a_00018
Bovi, R.C., Romanelli, J.P., Caneppele, B.F., Cooper, M. (2022).Global trends in dendrogeomorphology: A bibliometric assessment of research outputs, CATENA,210: 1-14. doi: 10.1016/j.catena.2021.105921
Borgatti, S.P., Everett, M.G. (2006). A graph-theoretic perspective on centrality. Social Networks, 28(4), 466-84. doi.org/10.1016/j.socnet.2005.11.005
Borrelli, L., Conforti, M., Mercuri, M. (2019). LiDAR and UAV System Data to Analyze Recent Morphological Changes of a Small Drainage Basin. ISPRS Int. J. Geo-Inf., 8(2), 536, 1-11. doi.org/10.3390/ijgi8120536
Callon, M., Courtial, J.P., Turner, W.A., Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Information (International Social Science Council), 22(2), 191-235. doi.org/10.1177/053901883022002003
Callon, M., Courtial, J.P., Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22(1), 155-205. doi.org/10.1007/BF02019280
Danesh, F., Ghavidel, S. (2020a). Visualizing Human Papillomavirus Conceptual Network Evolution: A Global View. Health Information Management, 16(6), 1-7. [In Persian] doi.org/10.22122/him.v16i6.3990
Danesh, F., Ghavidel, S. (2019b). Visualizing the Clusters and Dynamics of HPV Research Area. Iran J Med Microbiol, 13(4), 266-278. doi: 10.30699/ijmm.13.4.266
Ding, Y., Chowdhury, G.G., Foo, S. (2001). Bibliometric cartography of information retrieval research by using co-word analysis. Information processing & management, 37(6), 817-842. Doi:10.1016/S0306-4573(00)00051-0
Emmer, A. (2018). Geographies and Scientometrics of Research on Natural Hazards. Geosciences, 8, 382. doi: 10.3390/geosciences8100382
Forbes, L.K., Walters, S.J., Farrow, D.E. (2020). Instability of a dense seepage layer on a sloping boundary. Journal of Fluid Mechanics (J. Fluid Mech), 886, 1-34. doi: 10.1017/jfm.2019.1068
Gall, M., Nguyen, K.H., Cutter, S.L. (2015). Integrated research on disaster risk: Is it really integrated?. International Journal of Disaster Risk Reduction, 12, 255–67. doi:10.1016/j.ijdrr.2015.01.010
Giannakos, M., Papamitsiou, Z., Markopoulos, P., Read, J., Hourcade, J.P. (2020). Mapping child-computer interaction research through co-word analysis, International Journal of Child-Computer Interaction. International Journal of Child-Computer Interaction, 1-42. doi: 10.1016/j.ijcci.2020.100165
Günther, A., Reichenbach, P., Malet, J.P., Van Den Eeckhaut, M., Hervás, J., Dashwood, C., Guzzetti, F. (2012). Tier-based approaches for landslide susceptibility assessment in Europe. Landslides, 10(5), 529–546. doi: 10.1007/s10346-012-0349-1
He, Q. (1999). Knowledge discovery through co-word analysis. Library Trends, 48(1), 133-59. https://hdl.handle.net/2142/8267
Hess, D.M., Leshchinsky, B.A., Bunn, M., Mason, H.B., Olsen, M.J. (2017). A simplified three-dimensional shallow landslide susceptibility framework considering topography and seismicity. Landslides, 1–21. doi: 10.1007/s10346-017-0810-2
Hu, C.P., Hu, J.M., Deng, S.L., Liu, Y. (2013). A co-word analysis of library and information
science in China. Scientometrics, 97(2), 369- 382. doi: 10.1007/s11192-013-1076-7
Junwei, M., Xiaoxu, N., Huiming, T., et al. (2020). Displacement Prediction of a Complex Landslide in the Three Gorges Reservoir Area (China) Using a Hybrid Computational Intelligence Approach. Complexity, 1, 1-15. doi: 10.1155/2020/2624547
Kumar, S., Jan, J.M. (2012). Discovering Knowledge Landscapes: An Epistemic Analysis of Business and Management Field in Malaysia. Procedia-Social and Behavioral Sciences, 65, 1027-1032. doi: 10.1016/j.sbspro.2012.11.237
Kornejady, A., Ownegh, M., Sadoddin, A. (2015). Landslide Risk and Hazard Zonation. Journal of Emergency Management, 4(1), 51-62. doi: 20.1001.1.23453915.1394.4.1.4.2
Law, J., Bauin, S., Courtial, J., Whittaker, J. (1988). Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification. Scientometrics, 14(3-4), 251-64. doi: 10.1007/BF02020078
Lee, B., Jeong, Y.I. (2008). Mapping Korea’s national R&D domain of robot technology by using the co-word analysis. Scientometrics, 77(1), 3-19. doi: 10.1007/s11192-007-1819-4
Li, L., Liu, Y., Zhu, H., Ying, S., Luo, Q.,...& Shen, H.A. (2017). bibliometric and visual analysis of global geo-ontology research. Computers & Geosciences, 99, 1-10. doi: 10.1016/j.cageo.2016.10.006
Liao, H.C., Tang, M., Luo, L., Li, C.Y., Chiclana, F., Zeng, X.J. (2018). A bibliometric analysis and visualization of medical big data research. Sustainability, 10(2), 166. doi: 10.3390/su10010166
Liu, X., Zhan, F.B., Hong, S., et al. (2012a). A bibliometric study of earthquake research: 1900–2010. Scientometrics, 92, 747–765. doi: 10.1007/s11192-011-0599-z
 
Liu, G.Y., Hu, J.M., Wang, H.L. (2012b). A co-word analysis of digital library field in China. Scientometrics, 91(1), 203-217. doi: 10.1007/s11192-011-0586-4
Luo, X., Lin, F., Zhu, S., Yu, M., Zhang, Z., Meng, L., et al. (2019). Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. PLoS ONE, 14(4), e0215134. doi: 10.1371/journal.pone.0215134
Makkizadeh, F. (2019). Intellectual structure of knowledge in Nanomedicine field (2009 to 2018): A Co-Word ‎Analysis. Nanomedicine Research Journal, 4(2), 101-110. doi: 10.22034/nmrj.2019.02.007.
Melcer, E., Nguyen, T.H.D, Chen, Z., Canossa, A., El-Nasr, M.S., Isbister, K. (2015). Games research today: Analyzing the academic landscape, 2000-2014. The 10th International Conference on the Foundations of Digital Games. Pacific Grove, USA, June 22-25. https://www.researchgate.net/publication/278678569
Matjaž, M. (2018). The bibliometric impact of books published by the International Consortium on Landslides. Landslides, 15, 1459–1482. doi: 10.1007/s10346-018-1019-8
Matjaž, M.  (2017). Landslides: a top international journal in geological engineering and engineering geology?. Landslides, 14, 1827–1838. doi: 10.1007/s10346-017-0869-9
Milia MFederico, M. (2021). Global trends, Local threads. The Thematic Orientation of Renewable Energy Research in Mexico and Argentina between 1992 and 2016. Journal of Scientometric Research, 10(1s), 32-45. doi: 10.5530/jscires.10.1s.20
Mostafa, M. (2020). A knowledge domain visualization review of thirty years of halal food research: Themes, trends and knowledge structure. Trends in Food Science & Technology. Journal Pre-proof. doi:10.1016/j.tifs.2020.03.022
Neff, M.W., Corley, E.A. (2009). Thirty-five years and 160,000 articles: A bibliometric exploration of the evolution of ecology. Scientometrics, 80(3), 657-682. doi: 10.1007/s11192-008-2099-3
Ouyan , W., Wang, Y., Lin, C., He, M., Hao, F., Liu, H., Zhu, W. (2018). Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. The science of the total environment, 637-638, 208-220. doi: 10.1016/j.scitotenv.2018.04.434. 
Penna, D., Borga, M. (2013). Natural Hazards Assessment in Mountainous Terrains of Europe: Landslides and Flash Floods. Climate Vulnerability, 5, 229–239. doi: 10.1016/B978-0-12-384703-4.00524-4
Pourghasemi, H.R., Teimoori Yansari, Z., Panagos, P., Pradhan, B. (2018). Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arabian Journal of Geosciences (Arab J Geosci), 11, 193- 103. doi: 10.1007/s12517-018-3531-5 
Qin, J.H., Wang, J.J., Ye, F.Y. (2019). A Metric Approach to Hot Topics in Biomedicine via Keyword Co-occurrence. Journal of Data and Information Science, 4(4), 13-25. doi: 10.2478/jdis-2019-0018
Reyes-Carmona, C., Barra, A., Galve, J.P., Monserrat, O., Pérez-Peña, J.V., Mateos, R.M., et al. (2020). Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain). Remote Sensing,12(5), 809. doi: 10.3390/rs12050809
Ryan, G.W., Bernard, H.R. (2003). Techniques to Identify Themes Kumar S & Jan. Field Methods, 15(1), 85-109. doi: 10.1177/1525822X02239569
Seif, A., Mahmoodi, T. (2014). Lidar sensors and its applications. Scientific- Research Quarterly of Geographical Data (SEPEHR), 23(89), 72-80. [In Persian] dor: 20.1001.1.25883860.1393.23.89.11.3
Shen, S., Cheng, C., Yang, J., Yang, S. (2018). Visualized analysis of developing trends and hot topics in natural disaster research. PLOS ONE, 13(1): e0191250. doi: 10.1371/journal.pone.0191250
Soheili, F., Shaban, A., Khasseh, A. (2016). Intellectual Structure of Knowledge in Information Behavior: A Co-Word Analysis. Human Information Interaction) Human Info Interact), 2(4), 21-36. [In Persian] URL: http://hii.khu.ac.ir/article-۱-۲۴۴۶-fa.html
Wasserman, S., Faust, K. (1994). Social network analysis: Methods and applications. Boston: Cambridge University Press. doi: 10.1017/CBO9780511815478
Wang, Y., Liu, W., Li, G., Yan, W., Gao, G. (2019). A Bibliometric Analysis of Soil and Water Conservation in the Loess Tableland-Gully Region of China. Water, 11, 20. doi: 10.3390/w11010020
Wang, X., Inaba, M. (2009). Analyzing structures and evolution of digital humanities based on correspondence analysis and co-word analysis. Art research, 9, 123-134.  doi: 10.34382/00007711
Wu, X., Chen, X., Zhan, F.B., Hong, S. (2015). Global research trends in landslides during 1991–2014: a bibliometric analysis. Landslides, 12, 1215-1226. doi: 10.1016/j.nhres.2022.02.001
Yaqun, W.U., Shuangshuang, L.I., Junping, Y., Chengbo, W. (2020). Universities and geographical research development in China based on the bibliometrics analysis. Acta Geographica Sinica, 75(2), 302-317. doi: 10.11821/dlxb202002007
Yang, J., Cheng, C.X., Song, C.Q., Shen,  S., Ning, X. (2019). Visual analysis of the evolution and focus in a Landslide research field. Journal of Mountain Science, 16(5), 991-1004. doi: 10.1007/s11629-018-5280-z
Yang Z, Liu C, Nie R, Zhang W, Zhang L, Zhang Z, Li W, Liu G, Dai X, Zhang D, Zhang M, Miao S, Fu X, Ren Z, Lu H. (2022). Research on Uncertainty of Landslide Susceptibility Prediction—Bibliometrics and Knowledge Graph Analysis. Remote Sensing, 14(16):3879. doi: 10.3390/rs14163879
Zeinoun, P., Maalouf, F.T., Meho, L.I. (2020). The Arab Region’s Contribution to Global Mental Health Research (2009–2018): A Bibliometric Analysis. Front. Psychiatry, 11,182. doi: 10.3389/fpsyt.2020.00182
Zhuang, Y., Du, C., Zhang, L., Du, Y., Li, S. (2015). Research trends and hotspots in soil erosion from 1932 to 2013: a literature review. Scientometrics, 105, 743–758. doi: 10.1007/s11192-015-1706-3
Zhu, X., Zhang, Y. Co-word analysis method based on meta-path of subject knowledge network. Scientometrics 123, 753–766 (2020). doi: 10.1007/s11192-020-03400-0
Zong, Q.J., Shen, H.Z., Yuan, Q.J., Hu, X.W., Hou, Z.P., Deng, S.G. (2013). Doctoral dissertations of Library and Information Science. Scientometrics, Springer;Akadémiai Kia